Synergistic photocatalytic hydrogen evolution over oxide nanosheets combined with photochemically inert additives.
نویسندگان
چکیده
Photocatalytic hydrogen evolution over semiconducting niobate nanosheets is synergistically improved by coexisting photochemically inactive additives of clay particles and sodium chloride without precise nanoscopic structural regulation. In addition, the Pt cocatalyst loaded on the clay particles works better than that photodeposited on the photocatalytic nanosheets.
منابع مشابه
Graphitic-C3N4 nanosheets: synergistic effects of hydrogenation and n/n junctions for enhanced photocatalytic activities.
The increasing concern about environmental pollution and fossil fuel energies have urged researchers to seek renewable energy sources and methods for pollutant decomposition. Photocatalysis seems to be one of the most promising approaches, which uses natural sunlight to produce hydrogen from water and removes organic pollutants from the environment. Among the various photocatalysts, graphitic c...
متن کاملUltrathin HNbWO6 nanosheets: facile synthesis and enhanced hydrogen evolution performance from photocatalytic water splitting.
Ultrathin monolayer HNbWO6 nanosheets have been successfully prepared through a simple and ultrafast ion intercalation assisted exfoliation method. These obtained highly dispersed nanosheets present enhanced photocatalytic hydrogen evolution activity compared to the nanosheets prepared by the traditionally time-consuming process.
متن کاملDoping effect of non-metal group in porous ultrathin g-C3N4 nanosheets towards synergistically improved photocatalytic hydrogen evolution.
Searching for effective approaches of accelerating charge separation and broadening optical absorption is critical for designing a high-performance photocatalytic system. Herein, a photocatalyst based on the non-metal group doped porous ultrathin g-C3N4 nanosheets (CNB NS) was prepared through a combined methodology of precursor reforming and thermal condensation. The synergistic effect of non-...
متن کاملPhotocatalytic Hydrogen Evolution from Hexaniobate Nanoscrolls and Calcium Niobate Nanosheets Sensitized by Ruthenium(II) Bipyridyl Complexes
Hexaniobate nanoscrolls (NS-H4Nb6O17) and acid-restacked calcium niobate nanosheets (R-HCa2Nb3O10) were compared as oxide semiconductors in photocatalytic assemblies for H2 production using ethylenediaminetetraacetic acid (EDTA) as a sacrificial electron donor and platinum (Pt) nanoparticles as catalysts. Ru(bpy)3 and Ru(bpy)2(4,4′-(PO3H2)2bpy) (bpy ) 2,2′-bipyridine) were employed as visible l...
متن کاملEnhanced Photocatalytic Hydrogen Evolution by Loading Cd0.5Zn0.5S QDs onto Ni2P Porous Nanosheets
Ni2P has been decorated on CdS nanowires or nanorods for efficient photocatalytic H2 production, whereas the specific surface area remains limited because of the large size. Here, the composites of Cd0.5Zn0.5S quantum dots (QDs) on thin Ni2P porous nanosheets with high specific surface area were constructed for noble metal-free photocatalytic H2 generation. The porous Ni2P nanosheets, which wer...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical chemistry chemical physics : PCCP
دوره 17 8 شماره
صفحات -
تاریخ انتشار 2015